Heat Sinks **Basic Introduction to Heat Sinks** **Daniel Brateris** #### What is a Heat Sink? - * A heat sink is a mechanical device that is used to lower the thermal resistance of another device from it's case to the ambient air. - * Generally used to ensure that the temperature of a component does not exceed a particular temperature. #### What does a Heat Sink do? - * It gives excess energy (heat) a place to go - * A properly sized heat sink maintains the semiconductor junction temperature at or below the maximum allowable temperature. (found in the parts data sheet) - * Heat sink cooling capacity must take into account: - * Maximum power to be dissipated in the part - * Maximum ambient air temperature - * Altitude derating - * Customer usage #### What does a Heat Sink do? * Every 10 degree C increase from the maximum allowable junction temperature cuts the life of the semiconductor in half! # How is a Heat Sinks Effectiveness Measured? - * θ = degrees C/Watt = Theta = heat dissipation capacity - * Like an Ohm in electrical resistance Theta indicates resistance or opposition to heat flow - * Thermal resistance is temperature rise divided by power (heat). - * Theta is expressed in degrees Celsius rise per one Watt of power output - * Smaller θ = greater heat removal capability ## Basic Semiconductor Cooling #### Elements of Thermal Resistance $* \theta_{j-a} = Overall thermal resistance from the semiconductor junction to the ambient air$ - * θ_{j-c} = Thermal resistance from semiconductor junction to case of semiconductor (Inside the Part) - * θ_{c-s} = Thermal resistance from case to heat sink (The interface between the part and the heat sink) - * θ_{s-a} = Thermal resistance from the heat sink to the ambient air (Thermal resistance of the heat sink) #### Parameters Needed to Solve for Maximum Heat Sink Thermal Resistance - ***** Estimated Parameters: - * Maximum power to be dissipated (Pmax) - * Maximum ambient air temperature (Tambient-air-max) - * Maximum junction temperature (Tjunction-max) - * Thermal resistance from junction to case (θ_{j-c}) (from parts data sheet) - * Estimated thermal resistance between case and sink (θ_{c-s}) (from interface manufacturers data sheet) ## Finding the Right Heat Sink * Find the maximum overall thermal resistance of the system from the semiconductor junction to ambient air (θ_{j-a}) $$\theta_{j-a} = \frac{(T_{junction-max} - T_{ambient-air-max})}{Max \ Power \ Dissipated}$$ * To find the maximum heat sink thermal resistance: $$\theta_{s-a} = \frac{\left(T_{junction-max} - T_{ambient-max}\right)}{Max \ Power \ Dissipated} - \left(\theta_{j-c} + \theta_{c-s}\right)$$ * If the resulting number is negative the solution is impossible! ### Example - * Find the maximum heat sink thermal resistance for the following setup: - * Maximum Power Dissipated in Device: 10W - * Maximum Junction Temperature: 100C - * Maximum Ambient Air Temperature: 40C - * Internal Thermal Resistance: $\theta_{j-c} = 1.0 \text{ C/W}$ - * Interface Resistance: $\theta_{c-s} = 1.5 \text{ C/W}$ $$\theta_{s-a} = \frac{(100C - 40C)}{10W} - (1.0 + 1.5) = 3.5 C/W$$ * Heat sink must have a thermal resistance of 3.5 C/W or less #### Links - * AAVID Thermalloy: http://www.aavid.com - * Heat Sink Grease & Calculator: http://www.aavid.com/product-group/interface/greases